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Relativistic quantum mechanics leads to the specification of initial and final 
conditions for the wave amplitudes and electromagnetic potentials. The interac- 
tion between one scalar charged particle and the electromagnetic field has 
previously been solved by perturbation expansions in the Coulomb gauge. Here 
the theory is extended to the Lorentz gauge, which requires a different set of 
initial or final conditions on the potentials. 

1. I N T R O D U C T I O N  

Relativistic quantum mechanics offers an alternative to quantum field 
theory that is not beset by problems with divergent terms in perturbation 
expansions. The wave function can be interpreted in terms of probabili ty 
amplitudes properly normalized, and pair creation and annihilation can be 
represented by wave functions with a fixed number  of  variables. This 
formalism is based on Stueckelberg and Feynman's  idea (Stueckelberg, 
1941; Feynman,  1949) of  particles scattered backward in time, Dirac's  
many-times formalism (Dirac, 1932), and the separation of the wave function 
into positive- and negative-frequency parts (Feshbach and Villars, 1958). 
We further developed the relativistic theory of charged particles interacting 
with an external electromagnetic field (Marx, 1969, 1970a, 1970b). 

The interaction of one scalar charged particle with the electromagnetic 
field was solved by means of perturbation expansions (Marx, 1979) in the 
Coulomb gauge. In this gauge, the gauge-dependent  parts of  the potentials 
vanish (Marx, 1970c), only the transverse part  of  the vector potential obeys 
the wave equation, and there are no problems with the initial or final 
conditions. The Coulomb gauge condition is not invariant under Lorentz 
transformations,  while the Lorentz condition is invariant. The specification 
of the potentials at finite times requires a careful consideration of the 
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2 1 8  M a r x  

constraints that result from Maxwell's equations and the Lorentz condition 
When the charge density does not vanish. We show here how to obtain the 
solution in perturbation series of the particle wave function and the elec- 
tromagnetic potentials. 

We repeat only those equations from Marx (1979) that are required to 
understand the discussion of the initial conditions. We use the same notation 
and natural units. 

. EQUATIONS OF MOTION AND CONSTRAINTS 

The charged scalar particle is represented by the complex wave function 
~b(x), which satisfies the Klein-Gordon equation 

(D 2 + m2)q~ (x) -- 0 (1) 

where 

D t, = O/. + i e A ~ ( x )  (2) 

The electromagnetic potentials A~ are related to the fields F.~ by 

F~,~ = A~,,~ - A~,~. (3) 

they obey the Maxwell equations 

F~.~,~ =j~. (4) 

where j .  stands for the charge and current densities 

j~  = ie[ 6 * D~ga - ( D ' 6 " ) 6 ]  (5) 

In a Lorentz gauge, the potentials satisfy the Lorentz condition 

A. , .  =0  (6) 

and equation (4) reduces to the d'Alembert wave equation 

02A .  =j~ (7) 

Equation (4) also implies that the charge has to be conserved, that is, 

L,. =0 (8) 

which is satisfied as a consequence of the Klein-Gordon equation (1). We 
then take the four-divergence of both sides of equation (7) and find that 

a2A~,~ = 0 (9) 

thus, if A.,~ and OoA~,.~, vanish at the initial (or final) time, the Lorentz 
condition is satisfied at all times. Also one of the MaxweI1 equations (4), 
which can be rewritten as 

V "E=j0  (10) 
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is a constraint that has to be satisfied only a t t h e  initial (or final) time. In 
terms of the potentials, this equation is 

72Ao +V " A = -J0 (11) 

The wave function ~b can be separated into a positive-frequency part 
~b ~+) and a negative-frequency part q5 ~-), which are related by a simple 
operator to the probability amplitudes for the particle and the antiparticle, 
respectively. The boundary conditions in relativistic quantum mechanics 
are such that we have to specify the particle amplitude at the initial time 
and the antiparticle amplitude at the final time. To describe particle scatter- 
ing combined with pair annihilation, we specify the particle amplitude at 
the initial time and set the antiparticle amplitude at the final time equal to 
zero; through the equations of motion, we then find the solution in the 
form of the positive-frequency part at the final time, which provides the 
probability amplitude for particle scattering, and the negative-frequency 
part at the initial time, which provides the probability amplitude for pair 
annihilation. The wave function can also be obtained at intermediate times, 
but we do not relate this quantity to physical measurements, similarly, we 
specify the antiparticle amplitude at the final time and set the par t ic le  
amplitude at the initial time equal to zero to describe antiparticle scattering 
and pair creation. These boundary conditions arise naturally if we use the 
causal Green's function or Feynman propagator to solve the Kle in-Gordon 
equation. 

The electromagnetic potential is a real field, so we should not use the 
(complex) causal Green's function for the d'Alembert equation. Further- 
more, specification of either the posi t ive-or  negative-frequency part of a 
real field requires that both the function and the time derivative be given, 
but the potentials would be overspecified if we give them and their time 
derivatives both at the initial and at the final times. Thus, we specify the 
electromagnetic potentials completely either at the initial time (if the particle 
amplitude is given) or at the final time (if the antiparticle amplitude is 
given) and use the retarded or advanced Green's function, respectively, to 
solve the equation. There still is a degree of  arbitrariness in the boundary 
values of the potentials owing to gauge invariance; we specify a free 
electromagnetic field by giving two solenoidal vector fields for the values 
of the vector potential and its time derivative at the boundary time. 

3. PERTURBATION EXPANSIONS IN THE LORENTZ GAUGE 

In this section we discuss the problem of particle scattering and pair 
annihilation; the solution of  antiparticle scattering plus pair creation is the 
same rnutatis mutandis. 
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We assume that we can expand the fields in a power series in the charge 
e, that is, we set 

co 

d~(x) = ~. ekd)(k)(x) (12) 
k = 0  

A,~(x)= 2 ekA~)(x) (13) 
k~O 

and, separating the equations in each order, we obtain 

(0 2 + m 2) cb (k)(x) = to(k)(x) (14) 

O2A~)(x) = j~ ) (x )  (15) 

where the sources w (k) and :(k) j~, are expressed in terms of lower-order 
contributions to the fields (Marx, 1979). The Lorentz condition and the 
charge conservation equation also are satisfied in each order of  e. 

In zeroth order, the sources vanish and the fields are determined by 
their initial conditions. In particular, we have V �9 A (~ = 0 from the initial 
conditions and we set A(o ~ 0, so that we satisfy both the conditions for 
the Coulomb and Lorentz gauges to this order, as well as the constraint (11). 

The positive-frequency part q5 (+) of the wave function has to satisfy 
the initial condition in zeroth order, and it vanishes at the initial time t~ in 
higher orders. The negative-frequency part  ~b C-) can have contributions in 
each higher order, and both parts affect the charge density at ti. We have 
to take into account these contributions when computing the scalar potential, 
so that all constraints are satisfied. We have some leeway in the selection 
of initial conditions, because there are transformations that lead from one 
Lorentz gauge to another if the gauge function satisfies the d 'Alembert  
equation. We satisfy the constraints if we set 

V:A~kl(x, ti) : -jgk)(x, h) (16) 

0oA(ok)(x, t~) = 0 (17) 

A(k)(x, ti)=0, k > 0  (18) 

00A(k)(x, ti) -= 0, k > 0  (19) 

The solution of the Poisson equation (16), 

l f d3x,J(ok)(x ',~.L_._xqti) (20) a(ok)(x, t~)=~ J 

allows us to find A(o k) at the initial time; we can then solve the d 'Alembert  
equation (15) with the help of  the retarded Green's  function and obtain 

A(ok)(x, t) =4@ f d3x'lx--X'l-'[j(ok)(x',r)+E(~')A(ok'(x',ti)] (21) 
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where ~'(~-) is the derivat ive o f  the Dirac  ~ funct ion o f  the re tarded  t ime 
~" = t - t~ - I x - x ' l ;  we note  that  j<ok)(x, t) vanishes for  t < ti. 

Thus,  in order  k >  0, the constraint  equat ion  (11) is satisfied as a 
consequence  of  equat ions  (16) and (19), the Lorentz  condi t ion is satisfied 
at ti f rom equat ions  (17) and  (18), and the derivat ive o f  the Lorentz  condi t ion 
also vanishes  at t~ owing to equat ion (19) and  

OgA(ok)(x, ti) = 0 (22) 

which is a consequence  of  the d 'A lember t  equat ion  (l 5) and  equa t ion  (16). 

4. C O N C L U D I N G  R E M A R K S  

We have  shown how the constraints  on the e lec t romagnet ic  potent ia ls  
can be satisfied in the Lorentz  gauge when  ~b(+)(x, tl) is given. I f  ~b(-)(x, ts) 
is given instead,  we have  to specify the potent ia ls  at the final t ime ty and 
use the advanced  Green ' s  funct ion to solve the d 'A lember t  equat ion.  

Al though this soluti0n"lS more  compl ica ted  than  the solut ion in the 
C o u l o m b  gauge,  there are no difficulties in pr inciple  to carry out the 
calculat ions to de termine  the terms in the per turba t ion  expans ion  in the 
Lorentz  gauge.  These  solut ions are not formal ly  Lorentz  covariant ,  which 
is a reflection of  the fact that,  a l though usual ly  the equat ions  in a relativistic 
theory  are covar iant ,  the b o u n d a r y  condi t ions are not. 
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